
Probabilistic Graphical Models - B. Nasihatkon
Spring 1403 (2024)

Homework 4- Lab Instructions

Kalman Filtering

Sara Farahani

In this lab, we implement the Kalman filter for tracking an object moving on a 2D plane.
First, we make predictions based on the equations of motion. Then, we implement the
Kalman filter. To evaluate it, we begin by considering constant velocity. Finally, we add
constant acceleration to the state variables, and compare the results.

Note: You are allowed to use Python and the NumPy library. Using any other
packages is prohibited.

Display Trajectories
In this lab, we track an object for 3 different trajectories. Run the below code in the
trajectory.py file to generate and plot different trajectories.

def get_gt_trajectory(trajectory_type, dt, num_steps, *, radius=20,
angular_velocity=np.pi/4, angular_acceleration=0.05, b=0.2):

if trajectory_type == "circular":

t = np.linspace(0, num_steps*dt, num_steps)

true_x = radius * np.cos(angular_velocity*t)

true_y = radius * np.sin(angular_velocity*t)

return np.column_stack((true_x, true_y))

elif trajectory_type == "parabolic":

t = np.linspace(-num_steps*dt, num_steps*dt, num_steps)

true_x = 10 * t + t ** 2

true_y = 20 * t - 4.9 * t ** 2

K. N. Toosi University of Technology

Probabilistic Graphical Models - B. Nasihatkon
Spring 1403 (2024)

return np.column_stack((true_x, true_y))

elif trajectory_type == "spiral":

t = np.linspace(0, num_steps*dt, num_steps)

true_x = radius * np.cos(t+angular_acceleration*t**2)*np.exp(b*t)

true_y = radius * np.sin(t+angular_acceleration*t**2)*np.exp(b*t)

return np.column_stack((true_x, true_y))

else:

raise Exception("invalid trajectory type")

def get_measurements(trajectory_type, true_xy, noise_std):

noise = np.random.normal(0, noise_std, true_xy.shape)

measured_xy = true_xy + noise

return measured_xy

def plot(true_xy, measured_xy):

plt.figure(figsize=(8, 8))

plt.plot(true_xy[:, 0], true_xy[:, 1], label="Ground Truth Trajectory")

plt.plot(measured_xy[:, 0], measured_xy[:, 1], label="Measurements")

plt.xlabel("X position")

plt.ylabel("Y position")

plt.title("Trajectory")

plt.legend()

plt.grid(True)

plt.show()

if __name__ == "__main__":

trajectory_types = ["circular", "parabolic", "spiral"]

K. N. Toosi University of Technology

Probabilistic Graphical Models - B. Nasihatkon
Spring 1403 (2024)

measurement_noises = [1, 5, 5]

for i, trajectory_type in enumerate(trajectory_types):

true_xy = get_gt_trajectory(trajectory_type, dt=0.1, num_steps=100)

measured_xy=get_measurements(trajectory_type,true_xy,
noise_std=measurement_noises[i])

plot(true_xy, measured_xy)

Task 1: Equations of motion
In the first step, write a program and try to make predictions for the velocity and
acceleration of each of the three given trajectories according to:

𝑣
𝑡
 = ∆𝑥

∆𝑡 =
𝑥

𝑡
 − 𝑥

𝑡−1

∆𝑡

𝑎
𝑡
 = ∆𝑣

∆𝑡 =
𝑣

𝑡
 − 𝑣

𝑡−1

∆𝑡

Notice that you have to do this using the available observation (noisy location) and not
the ground truth. Plot each of the two coordinates of the estimated velocity and
acceleration (a total of 4 plots).

Task 2: Implement the Kalman Filter
To implement the Kalman filter, complete the KalmanFilter class in the file
kalman_filter.py. Complete the predict function using the following prediction equations
of the Kalman filter:

𝑋
𝑡
 = 𝐴 𝑋

𝑡−1
+ ϵ

𝑋

Σ'
𝑡
 = Σ

𝑋
 + 𝐴 Σ

𝑡−1
 𝐴𝑇

Where:
● is the state at time t𝑋

𝑡

● is the state at time t-1𝑋
𝑡−1

● is the state transition model𝐴

● is the covariance matrix of the state estimate at time tΣ'
𝑡

● is the covariance matrix of the process noiseΣ
𝑋

● is the covariance matrix of the state estimate at time t-1Σ
𝑡−1

K. N. Toosi University of Technology

Probabilistic Graphical Models - B. Nasihatkon
Spring 1403 (2024)

● is the process noise, which is drawn from Gaussian distributionϵ
𝑋

𝑁(0, Σ
𝑋

)

Then, complete the update function based on the correction equations of the Kalman
filter:

𝐾 = Σ'
𝑡
 𝐵𝑇(Σ

𝑂
+ 𝐵 Σ'

𝑡
𝐵𝑇)−1

𝑋
𝑡

= 𝑋'
𝑡
 + 𝐾(𝑂

𝑡
− 𝐵 𝑋'

𝑡
)

Σ
𝑡

= Σ'
𝑡
 − 𝐾 𝐵 Σ'

𝑡

Where:
● is the measurement model𝐵
● is the Kalman gain𝐾
● is the measurement at time t𝑂

𝑡

● is the covariance matrix of the measurement noiseΣ
𝑂

● is the updated state at time t𝑋
𝑡

● is the predicted state at time t𝑋'
𝑡

● is the covariance matrix of the state estimate at time tΣ
𝑡

● is the predicted covariance matrix of the state estimate at time tΣ'
𝑡

class KalmanFilter():

def __init__(self, A, 𝚺X, B, 𝚺O, X0, 𝚺’
t):

TODO: Define & initialize the matrix A

TODO: Define & initialize the matrix 𝚺X

TODO: Define & initialize the matrix B

TODO: Define & initialize the matrix 𝚺O

TODO: Define the initial state estimate vector X

TODO: Define the initial state covariance matrix 𝚺’
t

def predict(self):

K. N. Toosi University of Technology

Probabilistic Graphical Models - B. Nasihatkon
Spring 1403 (2024)

TODO: Predict Xt based on the prediction formula

TODO: Predict 𝚺’
t based on the prediction formula

def update(self, measured_xy):

TODO: Update K based on the correction formula

TODO: Update Xt based on the correction formula

TODO: Update 𝚺t based on the correction formula

Up to this point, you have implemented the equations. But to run the filter you need to
define the transition and observation models that are the matrices A and B. In the next
steps, you will define these matrices and create instances of this KalmanFilter class
for evaluation.

Task 3: Evaluate for Constant Velocity
In this part, we assume that the velocity is constant. Note that since the object is

assumed to move with constant velocity in , the state variable is ,𝑅2 𝑋 = 𝑥, 𝑦, ẋ, ẏ[]
where , are the position variables, and , are the velocity variables. Additionally, we𝑥 𝑦 ẋ ẏ
know the equations of motion as follows:

𝑥
𝑡
 = 𝑥

𝑡−1
+ 𝑣

𝑡−1
∆𝑡 + ϵ

𝑥

𝑣
𝑡
 = 𝑣

𝑡−1
 + ϵ

𝑣

We know that in the Kalman filter, the transition model is:

𝑋
𝑡
 = 𝐴 𝑋

𝑡−1
 + ϵ

𝑋

Where:
● is the state at time t,𝑋

𝑡

● is the state at time t-1,𝑋
𝑡−1

● is the state transition model,𝐴
● is the process noise, which is drawn from , is the covarianceϵ

𝑋
𝑁(0, Σ

𝑋
) Σ

𝑋

matrix of the process noise

Now, you should find the state transition matrix (A) by rewriting the above formulas in
matrix representation. What will this matrix be?

K. N. Toosi University of Technology

Probabilistic Graphical Models - B. Nasihatkon
Spring 1403 (2024)

Next, you need to find the observation matrix. The formula for observation is:

𝑂
𝑡
 = 𝐵 𝑋

𝑡
 + ϵ

𝑜

Where:
● B is the observation model, and
● is the measurement noise, which is drawn from , is the covarianceϵ

𝑂
𝑁(0, Σ

𝑂
) Σ

𝑂

matrix of the measurement noise.

Considering that we just measure the position, what will the matrix B be?

Now, you should:

● Write a program and use the KalmanFilter class to make predictions and
corrections on different trajectories in the trajectory.py file.

● Plot the estimated positions, measured values and the ground truth trajectory.

● Compare the predicted velocity with the predicted values of task 1 by calculating
and plotting the error.

● Try to make changes in the covariance matrix of the process noise (), theΣ
𝑋

covariance matrix of the measurement noise () and the initial stateΣ
𝑂

estimate(X0) parameters. Explain their effects on the results.

Task 4: Evaluate for Constant Acceleration
Now, we add constant acceleration to the state variables. Repeat what you did in task 3.
Consider that with the addition of acceleration, the state variable is now represented as

, where , are the position variables, , are the velocity𝑋 = 𝑥, 𝑦, ẋ, ẏ, ẍ, ÿ[] 𝑥 𝑦 ẋ ẏ
variables and , are the acceleration variables. Additionally, we know the equations ofẍ ÿ
motion as below:

𝑥
𝑡
 = 𝑥

𝑡−1
+ 𝑣

𝑡−1
∆𝑡 + 1

2 𝑎
𝑡−1

 ∆𝑡2

𝑣
𝑡
 = 𝑣

𝑡−1
+ 𝑎

𝑡−1
∆𝑡

𝑎
𝑡
 = 𝑎

𝑡−1

K. N. Toosi University of Technology

Probabilistic Graphical Models - B. Nasihatkon
Spring 1403 (2024)

Recall the prediction and observation formulas from the previous task. What will the
state transition matrix (A) and the observation matrix (B) be here?

Now, like what you did in task 3:

● Write a program and use the KalmanFilter class to make predictions and
corrections on different trajectories in the trajectory.py file.

● Plot the predicted positions, measured values, and the ground truth trajectory.

● Compare the predicted velocity and acceleration with the predicted values of task
1 by calculating and plotting the error.

● Try to make changes in the covariance matrix of the process noise (), theΣ
𝑋

covariance matrix of the measurement noise () and the initial stateΣ
𝑂

estimate(X0) parameters. Explain their effects on the results.

K. N. Toosi University of Technology

